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Abstract

We present an updated version of the Predicting Protein-Protein Interactions (PrePPI) webserver which
predicts PPIs on a proteome-wide scale. PrePPI combines structural and non-structural evidence within
a Bayesian framework to compute a likelihood ratio (LR) for essentially every possible pair of proteins in a
proteome; the current database is for the human interactome. The structural modeling (SM) component is
derived from template-based modeling and its application on a proteome-wide scale is enabled by a
unique scoring function used to evaluate a putative complex. The updated version of PrePPI leverages
AlphaFold structures that are parsed into individual domains. As has been demonstrated in earlier appli-
cations, PrePPI performs extremely well as measured by receiver operating characteristic curves derived
from testing on E. coli and human protein–protein interaction (PPI) databases. A PrePPI database of �1.3
million human PPIs can be queried with a webserver application that comprises multiple functionalities for
examining query proteins, template complexes, 3D models for predicted complexes, and related features
(https://honiglab.c2b2.columbia.edu/PrePPI). PrePPI is a state-of-the-art resource that offers an unprece-
dented structure-informed view of the human interactome.

� 2023 Published by Elsevier Ltd.
Introduction

The identification of proteins that interact with one
another is a challenging problem of central
importance in fundamental biology and in
medicine. Protein-protein interactions (PPIs) is a
widely used term which has multiple meanings.
Two proteins can interact with one another directly
either by forming a binary physical complex or by
being in physical contact in the context of a multi-
protein complex. Indirect interactions can include
two proteins that are part of a complex, but are
by Elsevier Ltd.
not in physical contact, or that are part of a
pathway or network that mediates their interaction.
Multiple experimental and computational tools are
available to detect or predict PPIs, and their
results are compiled in multiple databases. Here
we report a new version of our Predicting Protein-
Protein Interactions (PrePPI) database,1–2 describe
its unique features, and compare its performance to
that of other databases. We also place PrePPI’s
prediction algorithm in the context of recent
structure-based, co-evolution, and deep learning-
based developments in the prediction of PPIs.
Journal of Molecular Biology 435 (2023) 168052
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The key element of the PrePPI algorithm, which is
summarized in Figure 1, is proteome-wide
template-based modeling of PPIs, both direct and
indirect. Not accounting for splice variants and
posttranslational modifications, there are �200
Figure 1. PrePPI’s structural modeling (SM) pipeline: Stru
AlphaFold Protein Structure Database13 and parsed into
Database (CDD) as MA and MB.22 Structural neighbors in th
definitions from the Evolutionary Classification of Protein
structural alignment program.31 If structural neighbors of two
structure defines a template, NA1:NB3, used to create a stru
for the query proteins, MA:MB, is evaluated based on the ove
is then scored based on a number of features1–2 and trained
a negative set described in Methods to produce a fully conn

2

million possible non-redundant pairwise
combinations of human proteins. However, since
we consider full proteins as well as their individual
domains, we need to examine �4.55 billion
pairwise interactions and, since we make multiple
ctures for query proteins, QA and QB, are taken from the
domains with definitions from the Conserved Domain
e PDB3 for full length protein and domain structures with
Domains (ECOD) database are obtained from the ska
query proteins appear together in a PDB complex, this

cture-based sequence alignment with which an interface
rlap of the query and template residues.1 The interaction
on the HINT HQ-LC database,10 as the positive set, and
ected Bayesian network used to evaluate the model.
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interaction models for each pair, the number of
pairwise combinations evaluated is in the tens of
billions (see Methods). PrePPI’s ability to consider
such a large number of potential PPIs is enabled
by an efficient scoring function which is based on
the similarity of the modeled interface to the
interface of a known complex in the Protein Data
Bank (PDB).3 We highlight these points because it
is important to distinguish our goals from standard
template-based modeling. Furthermore, we are
not necessarily trying to produce an accurate model
of the complex as might be judged, for example, in
the CAPRI (Critical Assessment of PRediction of
Interactions) experiment4 – although obviously a
better model will produce a more reliable prediction.
Rather, our hypothesis is that, in the derivation of a
structural modeling score, our models are good
enough to provide evidence that two proteins form
a physical complex. Thus, a model that would score
poorly according to CAPRI metrics might be reliable
enough to provide a yes or no prediction as to
whether two proteins interact and, in addition, pro-
duce a low-resolution structural pose for the interac-
tion. As discussed below, PrePPI uses non-
structural information as well. For example, if two
proteins are co-expressed and have a good struc-
tural modeling (SM) score, the likelihood of an inter-
action, as given in PrePPI by a naı̈ve Bayesian
network, will increase. A PPI with low SM score
but high non-structural score suggests that the
interaction is indirect.
Testing and validating computational predictions

is a complicated challenge since experimental
databases themselves contain sources of
uncertainty and the degree of overlap between
them is still quite low in spite of the proliferation of
observations from high-throughput screens.
Moreover, they are often based on different
definitions of PPIs. Mass spectrometry-derived
Table 1 Overlap among PPI databases: The number of o
Methods) is listed for A. E. coli and B. Human.

A Interactome3D HINT H

Interactome3D 1,391

HINT HQ-LC 1,092 1,675

APID Level 2 381 363

STRING-Physical 396 651

B Interactome3D HINT HQ-

LC

HINT HQ-

Binary

AP

2

Interactome3D 15,629

HINT HQ-LC 8,639 15,598

HINT HQ-

Binary

11,761 15,598 119,526

APID Level 2 9,092 8,098 102,130 15

STRING-

Physical

9,519 9,888 29,761 40

PrePPI-2016 4,830 6,623 8,038 8,0

HURI 1,875 1,107 34,743 33

BIOGRID-MV 6,692 8,230 14,040 17

3

databases (e.g. Bioplex 3.05) focus on multi-
protein complexes6 while Y2H-based databases
(e.g. HuRI7) focus on binary interactions. Among
derived databases, the widely used STRING
database8 has a category for physical interactions
but does not distinguish binary interactions from
those in multi-protein complexes whereas data-
bases such as APID9 and HINT10 include both
direct and indirect interactions and attempt to distin-
quish between the two. As depicted in Table 1,
overlap between these various databases is limited
(see Methods for a description of each database).
Of note, Interactome3D which contains PDB struc-
tures and high quality homology models is well-
represented in most of the databases, but the HINT
high-quality literature-curated database (HINT HQ-
LC) contains the highest percentage of Interac-
tome3D structures.
In earlier versions of PrePPI,1–2 training was done

on yeast PPIs and testing was done on human inter-
actions, with the true positive dataset comprising
PPIs with at least two literature references. No
attempt was made at the time to train on datasets
of binary physical interactions since PrePPI predicts
both direct and indirect interactions. Here we have
taken a more refined approach, training the struc-
tural modeling component of PrePPI on HINT HQ-
LC human PPIs.10

In order to evaluate PrePPI’s structure-based
algorithm, we have used Escherichia coli K-12
(here E. coli) as a test organism and compared
predictions from PrePPI’s structural modeling
component to predictions from the threading
component of Threpp.11 Technology closely related
to Threpp powers the PEPPI server12 which, like
PrePPI, uses Bayesian statistics to integrate struc-
tural and non-structural information. But in contrast
to the PrePPI, the PEPPI webserver allows a user
to input only two protein sequences at a time while,
verlapping entries among the databases denoted (see

Q-LC APID Level 2 STRING-Physical

3071

2,322 10,577

ID Level STRING-

Physical

PrePPI-

2016

HURI BIOGRID-

MV

4,955

,161 272,361

17 16,569 26,982

,578 6,335 695 39,060

,120 54,531 15,369 2,173 78,189
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as described below, the PrePPI database of human
PPIs contains about 200 million entries with the
highest confidence predictions (�1.3 M) appearing
in the online application that can be queried in mul-
tiple ways including, for example, inputting a single
protein and outputting all predicted binding
partners.
Compared to previous versions of PrePPI, in

addition to improved training, features of the
current version include the replacement of
homology models with models from the AlphaFold
Protein Structure Database13 leading to increased
structural coverage of the proteome, separate train-
ing of the structural modeling and non-structural
components, a refined definition of PDB template
complexes,3 the implementation of a more accurate
algorithm PredUs 2.0 for predicting interfacial
residues,14 and a website with expanded functional-
ity. PrePPI is a unique resource that generates
novel hypotheses for the existence of PPIs, both
direct and indirect. Moreover, given the ongoing
developments in the use of deep learning-based
approaches to predict the structure of binary com-
plexes, PrePPI predictions can be used as a start-
ing point for the construction of accurate structural
models.
Results

Testing on experimental databases

E. coli: We have chosen to test the SM score on
E. coli, in part for comparison with Threpp11 and in
part to assess the applicability of our human-
trained Bayesian network (see below) to another
organism. PrePPI for E. coli was trained on human
HINT HQ-LC10 (see Methods). Table 2A presents
area under the ROC curve (AUROC) values for
the structural modeling component of PrePPI
(PrePPI-SM) and the threading component of
Threpp (Threpp-Threading)11–12 for E. coli evalu-
ated on three datasets: HINT HQ-LC and Interac-
tome3D PPIs for E. coli, and GS-Threpp,15 the
gold standard data set of 763 PPIs on which Threpp
was previously tested.11 Both methods yield good
results when tested on HINT HQ-LC (AUROC val-
ues 0.88 and 0.81 for PrePPI-SM and Threpp-
Threading, respectively) and Interactome3D
(AUROC values 0.95 and 0.85) but performance
Table 2 Area under ROC curve, AUROC, for different test set
that of Threpp-Threading, both tested on Interactome3D, Hin
PrePPI-SM and PrePPI-total tested on Hint HQ-LC and the P

A HINT HQ-LC

PrePPI-SM 0.88

Threpp-Threading 0.81

B HINT HQ

PrePPI-SM 0.83

PrePPI-Total 0.77

4

degrades (AUROC values 0.67 and 0.65) on GS-
Threpp. PrePPI-SM performs quite well on HINT
HQ-LC and performance improves on Interac-
tome3D which is comprised of PDB complexes or
close homologs.16 As can be seen in Table 1A,
HINT HQ-LC has a large intersection with Interac-
tome3D (65%). The slight difference in performance
may arise if some of the interactions in HINT HQ-LC
are not readily homology-modeled. Overall, the
PrePPI-SM results are somewhat better than those
obtained with Threpp-Threading but it is reassuring
that two different structure-based methods yield
very similar performance and, in particular, that a
proteome-wide method such as PrePPI is of com-
parable accuracy to a method that uses a more
complex and computationally intensive scoring
function to evaluate structural models.
Human: Table 2B presents AUROC values for

PrePPI-SM and PrePPI-Total, where the latter
corresponds to the predicted score with all
sources of evidence (Figure 1), with testing on
HINT HQ-LC and the high confidence set we
assembled in 2016, PrePPI-2016.2 PrePPI-SM per-
forms very well on HINT HQ-LC (AUC = 0.83) but
performance degrades on PrePPI-2016
(AUC = 0.73). We attribute the difference to the fact
that HINT HQ-LC was designed to encompass
experimentally observed direct PPIs and, thus,
has significant overlap (56%) with Interactome3D16

(Table 1B) while PrePPI-2016 contains many indi-
rect interactions (19% overlap with Interactome3D).
Consistent with this explanation, the difference in
performance between the use of just structural evi-
dence or the combination of structural and non-
structural evidence for testing on HINT HQ-LC
(AUROC = 0.83 for PrePPI-SM and 0.77 for
PrePPI-Total) is small, whereas the AUROC for
testing on the PrePPI-2016 set increases from
0.73 for PrePPI-SM to 0.89 for PrePPI-Total, indi-
cating that PrePPI-Total successfully captures both
structural and non-structural evidence.
Table S1 contains AUROC values for PrePPI-

Total tested on a number of PPI databases. The
values vary over a wide range which appears to
reflect underlying differences in the databases as
delineated in Table 1. As summarized in Methods,
HURI,7 HINT HQ-Binary10 and APID Level 29 con-
tain many Y2H results, STRING-Physical17 con-
tains many direct and indirect physical
s. A. E coli. The performance of PrePPI-SM compared to
t HQ-LC and GS-Threpp. B. Human. The performance of
rePPI 2016 high confidence set (PrePPI-2016).

Interactome3D GS-Threpp

0.95 0.67

0.85 0.65

-LC PrePPI-2016

0.73

0.89
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interactions, and BioGRID-MV18 infers PPIs from a
large range of experimental methods. HINT HQ-LC
is derived from binary interactions that have at least
two literature references and, in that sense, is most
closely related to PrePPI-2016. Agreement
between PrePPI and HURI is quite limited (see Luck
et al.7 for a discussion of HURI’s overlap with other
databases). Of course, it is impossible to know how
many predicted PPIs that do not appear in any data-
base are actually true positives. Indeed PrePPI’s
goal is to discover PPIs that do not appear in known
databases. Based on experimental tests and appli-
cations summarized in the Discussion, PrePPI has
already proved to be a reliable source of novel PPIs.
To placePrePPI predictions in the context of deep

learning approaches, we compared PrePPI
performance to that of D-SCRIPT,19 a proteome-
wide method for predicting physical interactions
between two proteins given just their sequences.
Similar to PrePPI, D-SCRIPTwas trained on human
PPIs and predicts PPIs for both human and E. coli,
however training and testing were performed with
PPIs from the STRING database17 whereas PrePPI
used HINT HQ-LC10 (see comparisons in Table 1A
and B). In spite of the differences in training and
testing sets, the performance, as judged by AUROC
values, is similar for both E. coli (PrePPI-SM: 0.88,
D-SCRIPT: 0.86) and human (PrePPI-SM: 0.83, D-
SCRIPT: 0.83) PPIs. Given the low overlap
between the HINT HQ-LC and STRING-Physical
databases, the strong performance of bothmethods
suggests they are highly complementary, not only in
methodological terms but also in the type of infor-
mation they encompass.
The PrePPI database: The full PrePPI database

contains predictions for �200 million PPIs. Even
though interaction models are evaluated for a
protein and its constituent domains, only the
highest scoring interaction for a given protein pair
is included in the database. Hence, the set of 200
million non-redundant PPIs corresponds to near
total coverage of all possible interactions among
�20 K proteins. The online database contains
about 1.3 M human PPIs of which about 370 K
represent predictions of direct physical
interactons. PPIs that appear in the online
database either are associated with an
FPR < 0.005 (LR > 379) or have the maximum
value of LR(SM) or LR(protein-peptide) > 100. Our
experience has been that interactions that meet
this latter criterion constitute high-confidence
physical interactions and, indeed, are associated
with an FPR < 0.001 when tested on the
structure-rich HINT HQ-LC database.
PrePPI website (https://honiglab.c2b2.columbia.

edu/PrePPI/): When a user inputs a UniProt ID or
gene name for a query protein, the website
returns several features of the protein and its
predicted interactors: 1) the names and functional
information for the query protein derived from
5

UniProt; 2) the sequence of the full-length query
protein as well as its domains, all of which can be
viewed in a protein-centric structure viewer; 3) a
list of PrePPI-predicted interactors of the query
protein and associated scores for the features
incorporated in the PrePPI algorithm, and, if they
exist for a given PPI, links to external databases
that compile interactions based on experiments and
literature; 4) an interaction-centric structure viewer
that shows the 3D model for a given PPI and,
depending on selections by the user, the template
PDB complex and the structure superposition of
the query structures on the template (Figure 1); 5)
functional annotations for the query protein, derived
from gene set enrichment analysis of the protein’s
interactors ranked according to the PrePPI-Total
score2; 6) annotations of the full-length query protein
sequence for disordered regions20; and 7) annota-
tions of the full-length query protein sequence for
interfacial residues as predicted by PredUs 2.014 that
is used in the PrePPI-SM scoring function (Figure 1).
Discussion

The PrePPI database was first reported in 20121

and updated in 2016.2 Its unique features include a
fast structure-based scoring function that enables
proteome-wide protein–protein interface evaluation
and the integration of structural and non-structural
evidence for an interaction. The current version of
PrePPI has been improved in a number of ways:
1) Most notably, our in-house homology model
database has been replaced with structures from
the AlphaFold Protein Structure Database13 for indi-
vidual proteins and their domains as annotated by
the Conserved Domain Database (CDD).21 As
explained in Methods, use of the AF/CDD database
requires the scoring tens of billions of interaction
models. This scoring takes about a day using
�2000 CPU processors. 2) The training of
structure-based versus non-structural evidence is
performed separately. Specifically, the structure-
informed predictions are trained with the HINT
HQ-LC database10 while non-structural features
are derived as implemented previously2 and trained
on databases with a predominance of non-
structural information. 3) The method to extract
non-crystallographic protein–protein interfaces
from the PDB has been revised. 4) A more accurate
algorithm, PredUs 2.0, was implemented for pre-
dicting interfacial residues on protein surfaces.14

5) New website features are as described above.
We are not aware of any structure-informed

database comparable in scope to PrePPI. Many of
its predictions have not been previously observed
since use of 3D structure information, especially in
matching protein structures to PPI template
complexes from the PDB, identifies many
interactions that would be undetectable with

https://honiglab.c2b2.columbia.edu/PrePPI/
https://honiglab.c2b2.columbia.edu/PrePPI/
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sequence-based methods. PrePPI performance is
comparable to that of high-throughput
experimental methods.1–2 Moreover, experimental
validation has already confirmed the reliability of
many novel predictions: 1) In the original PrePPI
paper,1 17 out of 21 predictions were confirmed with
co-IP assays; 2) In our study of virus/human interac-
tions with the P-HIPSTer database, which is based
on the PrePPI pipeline,22 PrePPI predictions
yielded a 76% precision as judged by co-IP experi-
ments; 3) PrePPI is a central feature in the OncoSig
algorithm that generated a lung cancer adenocarci-
noma (LUAD) signaling PPI network for KRAS that
recapitulated published KRAS biology and identi-
fied novel proteins synthetic lethal with an onco-
genic mutated form of KRAS that is constitutively
activated;18 of 21 were validated in 3D spheroid
models for LUAD.23 Thus, based on results in a
wide range of contexts, PrePPI predictions are
associated with a precision of �75–80%.
Of course, not all PrePPI predictions are correct

but, as highlighted in the previous paragraph, they
appear sufficiently accurate to generate
hypotheses that drive biological discovery.
Moreover, for direct binary PPIs, a model that
appears in the database can be used as a basis
for lower throughput approaches such as protein–
protein docking or deep learning algorithms such
as AlphaFold multimer24 which likely generate mod-
els that are more accurate than those in PrePPI.
PrePPI predictions for non-direct interactions also
provide valuable information by identifying pairs of
proteins that might be present in multi-protein com-
plexes and, moreover, PrePPI predictions can be
used to identify all proteins that are in physical con-
tact in such a complex.2 PrePPI predictions can also
be used in the construction of PPI networks that
comprise both direct and indirect interactions and,
when combined with features based on context-
specific gene expression or knockout screens, can
provide insight into dysregulation of cellular signal-
ing as demonstrated with the KRAS-centered
OncoSig network for LUAD.23

Given the continuous developments in structure
determination and sequence analysis, PrePPI will
continue to evolve and to incorporate new
technologies. One possibility is to leverage the
proteome-wide, complementary approaches of
PrePPI and D-SCRIPT19 and integrate the interface
predictions from both as features in an enhanced
PPI prediction algorithm. More computationally
intensive methods such as ECLAIR25 can be used
to filter PrePPI predictions thus improving their
accuracy. While such methodological advances
are in development, the current version of PrePPI
will be applied to multiple proteomes and to cross-
species interactions as implemented in our P-
HIPSTer database.22 In summary, we believe that
PrePPI constitutes a unique resource that will con-
tinue to find applications in multiple areas of
biomedical science.
6

Methods

Training the SM score

Extracting biological interfaces from the PDB: All
possible PDB complexes, regardless of source
organism, are considered. The quaternary
structure of a PDB file frequently does not
represent the biologically relevant quaternary
structure26 but will be represented by one of the “bi-
ological assemblies” contained in the PDB file. The
biological assemblies are specified in the
“REMARK 350” lines of the PDB file and contain a
set of geometric transformations (“BIOMT”
records). A given biological assembly is constructed
by applying the transformations defined for that
assembly to the set of chains in the PDB file. To
define template interface contacts, we construct
three-dimensional models of each biological
assembly using the associated transformations. A
contact between any pair of chains in a biological
assembly is defined when two heavy atoms across
the interface are within 6�A of each other. The union
of these contacts from all biological assemblies for
each pair of chains comprises the interface for
those chains and is used to evaluate structure-
based predictions as described in the following
sections. �200 K PDB structures, each of which
contain, on average, several bioassemblies, are
used to construct interfaces.
Model Building: Sequences for the human and

E. coli K12 proteomes are taken from the UniProt
defined reference proteomes with one
representative protein per gene (Proteome IDs
UP000005640 and UP000000625, respectively).27

As we recently described,28 each full-length
sequence is broken up into individual domains cor-
responding to those defined in the CDD.21 Three-
dimensional models for each full-length protein are
taken from the AlphaFold Protein Structure
Database13 with models for individual domains
extracted from the model of the full-length protein.
This generates models databases that structurally
represent 1) 20,251 human proteins with 20,251
full-length sequence models and 69,678 CDD
domain models, and 2) 4,463 E. coli proteins with
4,463 full-length sequence models and 7,713 CDD
domain models.
Interaction Model Construction: Sequences for

every protein chain in the PDB are downloaded
from the PDB web site.3 The sequences are clus-
tered at a sequence identity cutoff of 60% using
the program CD-HIT29 to form PDB sequence clus-
ters, and a representative for each cluster is defined
as the longest sequence in the cluster. The struc-
tures corresponding to a PDB sequence cluster
include the full-length PDB structures and their con-
stituent domains as defined by the Evolutionary
Classification of Domains (ECOD) database.31 For
a given query protein, the sequences for its associ-
ated models are matched to PDB sequence clus-
ters and the query models are structurally aligned
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to the PDB structure for the representative of the
corresponding cluster. The quality of the structure
alignment is scored using the Protein Structural Dis-
tance (PSD) calculated from the program ska.30 Of
note, in practice, ska alignments involve protein
structures with at least three secondary structure
elements so that, beyond PrePPI’s use of sequence
orthology as an evidence source, PrePPI typically
does not predict interactions involving a single a-
helix to a structured domain. If a query model aligns
with a PSD < 0.6 to the structure of the representa-
tive sequence of a PDB cluster or its domains as
defined by ECOD,31 the query model is further
aligned to all of the cluster structures. PDB struc-
tures with PSD < 0.6 are kept as structural neigh-
bors of the query model. Whenever the structures
for the structural neighbors of two query proteins
appear together in a PDB complex (as defined
above), we call this complex a “template” for an
interaction of the query proteins. In practice, we
never create a three-dimensional interaction model,
rather the structure-based sequence alignments
between the query protein models and the identified
interaction model template chains are used to
derive properties of the interaction: the quality of
the alignment itself; the extent that residues of the
query proteins align to interfacial residues in the
template; and the extent to which residues pre-
dicted to be interfacial in the query proteins align
to interfacial residues in the template.1 Predicted
interfacial residues are obtained from our program
PredUs 2.0.14 This scoring avoids the need to
explicitly calculate pairwise properties while pre-
serving context-specific information for the template
complex and enables rapid evaluation of interaction
models from among billions of possible pairwise
query combinations.
Given that the full length protein and multiple

domains are used for each protein and multiple
models are tested for each of the 90 K human
query sequences, tens of billions of interaction
models must be evaluated. Each model is
evaluated using a scoring function derived from a
Bayesian network based on features as
summarized above and reported previously.2 Train-
ing of the Bayesian network is based on training
sets as described below. For a given protein pair,
the highest scoring interaction, whether it is
between two full length proteins or between two
domains, is chosen for that PPI, leading to a non-
redundant set of about 200 million scored
predictions.
True positive data sets: Themost obvious training

set for direct interactions is the PDB3 but it contains
a relatively limited number of entries for complexes
in a given proteome and redundancies further limit
this number. Instead, we have preferred to use
the HINT high-quality literature-curated database,
HINT HQ-LC,10 which appears to be the best
source for direct physical interactions and currently
has 16 K entries for human and 1,753 for E. coli.
7

We have used a number of databases to
calculate ROC curves. The size of these databses
and the overlap between them appear in Table 1.
They include:
Interactome3D16: PDB structures and easily con-

structed homology models.
HINT high-quality literature-curated (HINT HQ-

LC)10: Experimentally observed binary PPIs with
at least two literature references.
APID Level 29: Interactions experimentally

observed by at least 1 binary method.
STRING-Physical8: Direct and indirect PPIs in the

same complex with experimental evidence.
BioGRID-MV18: PPIs curated from both high-

throughput datasets and individual focused studies
that are validated by multiple experiments.
HURI7: Binary PPIs validated by three variations

of the Y2H assay.
Overall, the lack of overlap among different

databases highlights questions about how they
are used/chosen in the training of computational
methods, especially for those focused on direct
interactions. Our decision to train the structural
component on a different true positive set than
that used for the non-structural component is an
attempt to address this issue. For both human and
E. coli, HINT HQ-LC has significant overlap with
Interactome3D consistent with its focus on direct
interactions.
True negative data set: The negative set used in

training and testing consists of all possible human
PPIs minus the union of PPIs that appear at any
level of confidence in the databases listed in the
previous section. The treatment of every
interaction for which there is no evidence as a true
negative obviously diminishes apparent
performance. But our experience has been that,
as opposed to precision/recall curves, ROC
curves are not significantly affected by the size of
the negative set. We have confirmed this behavior
by changing the size of the negative set to be 10
times the size of the positive set and found that
this has essentially no effect on the various ROC
curve statistics. Specifically, the values in
Table S1 are identical using either negative set. In
addition, Figure S2 shows complete overlap
between between ROC curves using both
negative sets as tested on two different data sets.
Training the non-structural score

As reported previously, in addition to structural
evidence, PrePPI uses a number of non-structural
features including partner redundancy, GO (gene
ontology) annotation, sequence orthology, and
phylogenetic profile. Details about the calculation
and training of non-structural contributions are
described in our 2016 publication2 and will not be
repeated here. Briefly, the true positive set was
taken from multiple databases with the requirement
that a PPI be identified in two independent literature
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references and no attempt was made to distinguish
direct physical from non-direct interactions.
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